Final Exam

March 19, 2013
Organic Chemistry 335

I will not accept answers on scratch paper

This exam is 110 minutes long (8-9:50). I will post a key on D2L when I have all the exams back. There will be no make-up exams. A missed final will result in an incomplete for the course. Please be considerate of your fellow classmates when leaving. Don't stand by the doors and discuss the exam.

All cell phones and personal audio devices must be turned off and put away. The use of calculators, notes, the textbook, or your neighbors test is not permitted during the exam. You may use molecular models, but they cannot be shared during the exam.

Please put your in-class number and your name on the second page and back of the exam.
You may tear off this page for easier use of the tables.
If your test becomes unstapled, please let me know

IR Data		General \quad Shape $\quad\left(\begin{array}{l}\text { intensity } \\ \text { strong }=s \\ \text { middle }=\mathrm{m} \\ \text { weak }=\mathrm{w}\end{array}\right)$
O-H alcohol	3600-3200	broad (s / m)
O-H Carboxylic Acid	3600-2500	broad ($\mathrm{s} / \mathrm{m} / \mathrm{w}$)
N-H Amine/Amide	3500-3350	"fangs" (s/m/w)
sp C-H	3320-3310	sharp ($\mathrm{s} / \mathrm{m} / \mathrm{w}$)
$\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$	3100-3000	sharp ($\mathrm{s} / \mathrm{m} / \mathrm{w}$)
$\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$	3000-2900	sharp (s / m)
$-\mathrm{C} \equiv \mathrm{N}$ nitrile	2240-2280	sharp ($\mathrm{w} / \mathrm{m} / \mathrm{s}$)
$-\mathrm{C} \equiv \mathrm{C}$ sp-sp alkyne	2100-2200	sharp (m)
-C=O (carbonyl)	1750-1650	sharp (s)
$-\mathrm{C}=\mathrm{C} \mathrm{sp}^{2}-\mathrm{sp}^{2}$	1680-1600	$\operatorname{sharp}(\mathrm{m} / \mathrm{w})$
-sp ${ }^{2} \mathrm{C}-\mathrm{O}$	1250-1200	sharp (m/w)
-sp ${ }^{3} \mathrm{C}-\mathrm{O}$	1200-1025	$\operatorname{sharp}(\mathrm{m} / \mathrm{w})$

${ }^{13} \mathrm{C}$ NMR Chemical Shift Ranges	
Type of Carbon	Chemical Shift (δ) range in ppm
RCH_{3}	0 to 35
$\mathrm{R}_{2} \mathrm{CH}_{2}$	15 to 40
$\mathrm{R}_{3} \underline{\mathrm{C}} \mathrm{H}$	25 to 50
$\mathrm{R}_{4} \mathbf{C}$	30 to 40
$\mathrm{R} \underline{\mathrm{C}}=\underline{\mathbf{C}} \mathrm{R}$	65 to 90
$\mathrm{R}_{2} \mathbf{C}=\underline{\mathbf{C}} \mathrm{R}_{2}$	100 to 150
(1)	110 to 175
$\mathrm{R} \mathbf{C H B r}$	20 to 40
RCHBr	20 to 40
RCHCl	25 to 50
$\mathrm{RCH}_{2} \mathrm{NH}_{2}$	35 to 50
$\begin{aligned} & \mathrm{R}_{\mathbf{C H}}^{2} \mathbf{O H} \\ & \mathrm{R}_{2} \mathbf{C H}_{2} \mathrm{OR} \end{aligned}$	50 to 65
$\mathrm{RC}=\mathrm{N}$	110 to 125
	160 to 185
	190 to 220

Predicting the chemical shift of proton/s on a sp ${ }^{3}$ carbon in a ${ }^{1} \mathrm{H}$ NMR spectrum methyl $\left(\mathrm{XCH}_{3}\right)$: starting point is 0.9 ppm . methene $\left(\mathrm{X}_{2} \mathrm{CH}_{2}\right)$: starting point is 1.3 ppm . methine ($\mathrm{X}_{3} \mathrm{CH}$): starting point is 1.5 ppm	
Group (X)	Increment (ppm)
$\begin{gathered} \zeta-\mathrm{CH}_{3} \\ \text { (or any alkyl group) } \end{gathered}$	0.0
$\begin{gathered} 3-\mathrm{CH}=\mathrm{CH}_{2} \\ \text { (or an alkene group) } \end{gathered}$	0.9
$\begin{gathered} \xi-\mathrm{C} \equiv \mathrm{CH} \quad \xi-\mathrm{C} \equiv \mathrm{CR} \\ \text { (an alkyne group) } \end{gathered}$	0.9
ξ-SH, $\}$-SR	1.2
	1.2
$\}-\mathrm{C} \equiv \mathrm{N}$	1.2
$\left.\xi-\mathrm{NH}_{2}, \xi \mathrm{NHR}\right\}-\mathrm{NR}_{2}$	1.2
$\}-\mathrm{I}$	1.3
$\xi-\mathrm{Ph} \xi$	1.4
$\}-\mathrm{Br}$	1.8
$\xi-\mathrm{Cl}$	2.1
$\}-\mathrm{OH}\}-\mathrm{OR}$	2.4
$\stackrel{\mathrm{O}_{\mathrm{O}}^{4}}{\mathrm{H}}$	2.8
\}-O->	3.0
$\}-\mathrm{F}$	3.2

${ }^{1}$ H NMR Chemical Shift Ranges for \mathbf{H} attached to non $\mathbf{s p}^{\mathbf{3}}$ Carbons	
Type of Proton	Chemical Shift (δ) range in ppm
$\begin{gathered} \hline \mathrm{O} \\ \text { RC̈O-H } \end{gathered}$	10 to 12
$\begin{gathered} \mathrm{O} \\ \mathrm{R} \stackrel{\mathrm{C}}{\mathrm{C}}-\mathrm{H} \\ \hline \end{gathered}$	9 to 10
凹-H	6.5 to 8.5
	4.5 to 5.5
$\mathrm{RC}=\mathrm{C}-\underline{\mathbf{H}}$	2 to 3
$\mathrm{R}_{2} \mathrm{CO}-\underline{\mathrm{H}}$	1 to 5.5
$\mathrm{R}_{2} \mathrm{CHN}-\underline{\mathrm{H}}$	1 to 4

Organic Chemistry 335
Final Exam
March 19, 2013

In-class \# \qquad
Name
(Last, First)

1. Name the following compounds (12 points)

2. Draw the following compounds. (12 points)
3. What was the starting material, reagents, or product/s for the following chemical transformations? If there is no reaction write "no reaction" Do not forget about stereochemistry (84 points)

3. Continued

Problem 3 continued.

NBS

Problem 3 continued.

4. a. Draw the dienophile for the following reaction. 3 points
b. Circle the product that is formed from an Exo transition state. 3 Points

5. Design a synthesis of compound Y. (16 points)

* The synthesis must start with benzene.
* You can use any reaction you have learned this year.
* All carbons (except benzene)that end up in the product must start from carbon dioxide and/or alcohols that has three carbons or less.
* You need to show the how you make the reagents and intermediate products.
* The major product must be carried on to the next step.
* You do not need to show the mechanisms.

6. Draw the complete mechanism acid catalyzed removal of the diethyl ketal. (16 points)

7. What is the following structure? $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{4}$ (17 points: these 17 point are broken up in the problem)

What are the degrees of unsaturation or IHD? (3 point)

IR: $3041,2994,1729,1285 \mathrm{~cm}^{-1}$
degrees of unsaturation
or IHD

${ }^{13} \mathrm{C}$ NMR data (ppm)

List four types of bonds the IR show this molecule has. (4 points)
1.
2.
3.
4.

Please tell me what you think each peak in the ${ }^{1} H$ NMR represents ($\mathrm{CH}_{\underline{x}}, \mathrm{OH}, \mathrm{NH}_{\underline{x}} \ldots$) and how you get its splitting pattern (5 points)
${ }^{1}$ H NMR
11.9 (s, 1H)
11.7 ($\mathrm{s}, 1 \mathrm{H}$)
2.4 (t, 2H)
1.9 (t, 2H)
1.1 (s, 6H)

Draw the structure that best fits all the data. (5 Points)
8. Draw a complete mechanism for the following $S_{N} 1$ reaction . (6 points)

9. Provide a short explanation (pictures are worth a 1000 words) why there is a drastic difference in the acidity of the methylenes of cyclopentadiene and cycloheptatriene. (6 points)
cyclopentadiene $\mathrm{pK}_{\mathrm{a}}=16 \quad$ vs \quad cycloheptatriene $\mathrm{pK}_{\mathrm{a}}=36$
10. Draw a mechanism for the following reaction. (5 points)

IQ1. Starting from pure (1R,6S)-1-ethyl-7-oxabicyclo[4.1.0]heptane X design a synthesis of pure (1S,2S)-1-ethyl-1,2-dimethoxycyclohexane and pure (1R,2R)-1-ethyl-1,2-dimethoxycyclohexane . (4 points)
(1R,6S)-1-ethyl-7-
oxabicyclo[4.1.0]heptane

IQ2. Draw the complete mechanism for the following reaction. (6 points)

